Institutional Repository Linear complexity for sequences with characteristic polynomial fv

نویسندگان

  • Alex J. Burrage
  • Ana Sălăgean
  • Raphael C.-W. Phan
چکیده

We present several generalisations of the GamesChan algorithm. For a fixed monic irreducible polynomial f we consider the sequences s that have as characteristic polynomial a power of f . We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite characteristic p, the latter generalising an algorithm of Kaida et al. We also propose an algorithm which computes the linear complexity given only a finite portion of s (of length greater than or equal to the linear complexity), generalising an algorithm of Meidl. All our algorithms have linear computational complexity. The algorithms for computing the linear complexity when a full period is known can be further generalised to sequences for which it is known a priori that the irreducible factors of the minimal polynomial belong to a given small set of polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Complexity for Sequences with Characteristic Polynomial f v Alex

We present several generalisations of the GamesChan algorithm. For a fixed monic irreducible polynomial f we consider the sequences s that have as characteristic polynomial a power of f . We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite ch...

متن کامل

On the linear complexity of Hall's sextic residue sequences

In this correspondence, the characteristic polynomial and hence the linear complexity of Hall’s sextic residue sequences are determined.

متن کامل

Notes about the linear complexity of the cyclotomic sequences order three and four over finite fields

We investigate the linear complexity and the minimal polynomial over the finite fields of the characteristic sequences of cubic and biquadratic residue classes. Also we find the linear complexity and the minimal polynomial of the balanced cyclotomic sequences of order three. Keywords—linear complexity, finite field, cubic residue classes, biquadratic residue classes

متن کامل

Effective Positivity Problems for Simple Linear Recurrence Sequences

We consider two computational problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (determine whether all terms of a given LRS are positive) and the effective Ultimate Positivity Problem (determine whether all but finitely many terms of a given LRS are positive, and if so, compute an index threshold beyond which all terms are positive). We show that, f...

متن کامل

On the Positivity Problem for Simple Linear Recurrence Sequences,

Given a linear recurrence sequence (LRS) over the integers, the Positivity Problem asks whether all terms of the sequence are positive. We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017